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Abstract

Small-angle X-ray scattering (SAXS) is a technique that enables convenient nanoscopic

characterization of various samples under various conditions. In a SAXS experiment,

a sample is irradiated with an X-ray beam, resulting in a two-dimensional scatter-

ing pattern. Unfortunately, this scattering pattern is distorted by a point spread

function (PSF), that can be controlled during the experiment.

In this thesis, we propose a deconvolution algorithm that takes multiple scat-

tering patterns, each acquired with a different PSF, and recovers their underlying

scattering pattern. The algorithm is based on casting the recovery as minimization

problem, that is shown to have a unique solution, obtained using the conjugate gra-

dients method. In addition, we propose cascading our algorithm with a sub-pixel

super resolution algorithm [36]. We evaluate our algorithm using both numerical

simulations as well as using experimental SAXS measurements.
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Chapter 1

Introduction

Small Angle X-ray Scattering (SAXS) is a method for studying the physical features

of nanoscopic structures, which exploits the scattering pattern produced when X-

ray photons scatter from a crystal structure [11]. Historically, SAXS experiments

have been conducted in specialized synchrotron facilities, which harness their high-

flux of X-ray photons to provide an adequate scattering signal, and till our days,

important SAXS experiments are being conducted in such facilities. However, such

experiments are not accessible to most industries and scientists, as synchrotron-

based experiments are commonly over-booked world-wide. Recent advances in small

scale lab-based X-ray sources and, in particular, in high-efficiency solid-state 2D

X-ray detectors enable conducting some of the experiments using lab-based SAXS

systems. Such systems are best suitable for the study of hours-long dynamics of a

nanoscopic structural organization [18, 14, 19] or when SAXS is used to optimize

sample preparation for a synchrotron experiment. Nevertheless, lab-based SAXS

systems suffer from two major drawbacks. First, their X-ray beam has much lower

flux compared to synchrotron-based systems, and second, they require large floor

space. Below we discuss these two drawbacks, but we first describe SAXS image

acquisition and formation.

Any camera, including an X-ray detector, consists of multiple pixels placed on a

rectangular grid. Each pixel is a device that counts photons hitting it during a given

period of time, known as the exposure time. At the end of the exposure time, counts
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from all the pixels are stored on a matrix, called an image, representing a discrete

version of the scene as captured by the camera [10]. A camera can be characterized

by several attributes, but perhaps the most important one is it’s ability to resolve

separate objects in the image, termed “resolution”. Image resolution depends on the

number of pixels as well as their size.

Typically, the photon count in each pixel is characterized by Poisson statis-

tics [38]. As a consequence, the signal to noise ratio (SNR) at each pixel is the

square-root of the count (n−1/2 where n is the photon count at the pixel). By the

Central Limit Theorem, when n is large the Poisson distribution is well approximated

by the Gaussian distribution [1]. Therefore, it is common to consider the noise in

each pixel as Gaussian and additive. To obtain an adequate photon count in each

pixel, for example in order to obtain a sufficiently high SNR, we need to properly

set the exposure time, depending on the incoming flux of photons; the lower the

incoming flux, the higher the exposure time required in order to obtain a given total

photon count. However, long exposure times may be prohibitive due to budget con-

straints, as well as due to hardware related reasons (such as temperature limitations,

power consumption, beam stability, etc [6]). So, low flux forces long exposure times,

however, these may be limited. In order to overcome this, it is possible to use a

different approach, aimed at holding fixed the total photon count.

Low flux is first and foremost a result of the low intensity X-ray source used by

lab-based systems [46]. Moreover, after emitted from the source, the X-ray beam

undergoes collimation prior to arriving to the sample, a process that further reduces

the flux as explained next. X-ray sources emit photons in a range directions. In

order to produce a collimated beam, it is passed through lead slits placed on the

line between the source and the sample, which pass only photons moving in specific

directions. At least two slits are placed between the source and the sample – one close

to the source and the other close to the sample [11]. These slits block all photons

not moving parallel to the line from the source to the sample. However, this photon-

blocking process also reduces the flux of the beam arriving at the sample [31]. So,

by compromising on the collimation of the beam, it is possible to increase the size of

the lead slits, that in turn increases the number of photons passing through them,
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thus increasing the flux. Increasing the size of the slits in lab-based SAXS systems

results in a beam width which is 250 times wider than that of a synchrotron [39].

This increase in beam width blurs the acquired image, as explained next.

Suppose some real-world scene is to be acquired (in SAXS framework this scene

is a scattering pattern, to be explained below). As explained earlier, due to the

discrete nature of the pixels, any acquired image is a discrete version of the real-

world scene. Furthermore, additional factors may affect the acquired images, such

as the blur due to the non-collimated beam. Here, we denote by X the image that

would have been acquired if no beam-blur occurred, and by Y the image that was

actually acquired. Mathematically, we model the connection between X and the

acquired image Y by [10]

Y = P ∗X +N, (1.1)

where ∗ is 2D convolution operator, N is some noise, and P is a matrix that rep-

resents the point spread function (PSF) of the imaging device. In order to extract

information from SAXS measurements, it is mandatory to retrieve the underlying X

out of the acquired Y .

A tight connection exists between the slit shape and the PSF [32]. Suppose we

acquire an image with no sample in front of the detector. Placing a slit right in

front of the detector would form an image similar to the shape of the slit, since only

photons that pass the slit arrive at the detector. So, having a small rectangular slit

will form a small rectangle in the acquired image, with similar dimensions to that

of the slit (assume the slit is much larger than the pixel size). Since photons move

in straight lines, increasing the distance between the slit and the detector would

produce a rectangular image, but with increasing dimensions. This occurs since the

beam is never perfectly collimated, and photons with non-parallel motion pass the

slit, and arrive at pixels beyond the close slit-to-detector case. Thus, the image of

the beam is highly correlated with the shape of the slit. If we change the slit shape

to a wider rectangle, the out-coming image would be a wider rectangle in the image.

The naked beam acquisition is relevant to a scattering pattern acquisition in the

following fashion: if a sample is placed between the last slit and the detector, the
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beam shape hitting the sample is almost identical to the naked beam image, and so

the naked beam acquisition can be considered as the PSF.

With respect to the previously mentioned slit size changing technique, it can be

seen that by varying the slit’s shape from very tight to increasingly wider, the opera-

tor P blurs X in respectively increasing manner, as the following thought experiment

demonstrates. Assume a very strong source and a pinhole-like slit. The resulting PSF

can be well approximated by a delta-function, and hence such a PSF will result in

no blur, since convolution with a delta-function is the identity operator. The strong

beam ensures high flux despite the given slit. On the other hand, increasing the

size of the slit produces some other, wider, PSF, resulting in blurring X due to the

convolution. The effect of P in blurring X can also be analyzed from the frequency

point of view. Performing DFT on Eq. 1.1, we get that the convolution transforms

into entry-wise multiplication, and multiplying the DFT of X with the DFT of P

might result in attenuating some frequencies. In the delta function PSF case, the

DFT transforms it into a constant, so the entire spectrum of X can be found in the

spectrum of Y . On the other hand, any other PSF will attenuate frequencies or even

zero some of them altogether. In other words, some frequencies of X might get lost

in the acquisition process and would not be found in Y .

Sometimes the expected scattering pattern X in known, and so the expected

DFT of X is known as well. If this spectrum is expected to have frequencies of

small magnitude, a PSF can be engineered in order to ensure that these frequencies

would be attenuated in the acquisition process. Attenuating insignificant frequencies

in the DFT of X produces Y that has a spectrum similar to that of X, except for

frequencies that have small impact on the underlying X. Knowing the required PSF

for this process, it can be generated using the right slit-shape [11], and contemporary

lab-based SAXS operators indeed use this knowledge in order to choose a roughly

adequate slit shape.

However, the latter approach requires a very good knowledge of the expected

scattering pattern, which is often unavailable. So X needs to be recovered from

its blurry version Y by some digital deblurring algorithm. Several such algorithms

have been proposed over the years [27, 35, 48]. A naive solution to the deblurring
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problem is neglecting the additive noise and simply inverting Eq. 1.1. However, this

solution is, in general, ill-conditioned. In order to see this, we turn once again to the

spectral point of view. Performing DFT on Eq. 1.1 results in Ŷ = P̂ X̂ + N̂ , where

[̂·] represents the DFT of [·], and the multiplication is entry-wise. Assuming P is

square, neglecting N̂ and solving for X̂ results in X̂ = Ŷ/P̂ , from which an estimate

for X can be obtained using the inverse DFT of Ŷ/P̂ , where the division is entry-

wise. Both Y and P are measured so computing Ŷ/P̂ should be trivial. However,

P̂ may have values that are close to zero, which causes amplification of noise and

measurement errors when computing Ŷ/P̂ . Since the DFT matrix is orthogonal,

these errors persist when estimating X using the inverse DFT. We next present

several deconvolution algorithms and their approach to overcoming this problem in

estimating X.

A first attempt of avoiding this issue is the inverse filtering method. Instead of

using 1/P̂ , we look at P̂ ∗/(P̂ ∗P̂ + ε) where P̂ ∗ is the imaginary entry-wise conjugate

of P̂ and ε > 0, with all multiplications and divisions being entry-wise. If principle,

an optimal ε can be obtained and this solution for 1/P̂ is adequate for simple tasks

(i.e. when the noise can be neglected). However, it suffers from several major draw-

backs: an optimal ε is not easy to find and a constant ε for all frequencies neglects

the different contribution of frequencies to the image. In order to overcome these

drawbacks, Wiener [48] proposed using prior knowledge on the noise (which in our

setting we assumed to be Gaussian) and replacing the constant ε by a matrix corre-

sponding to the SNR at each frequency. In order to do so, we define the reciprocal

spectral SNR matrix: N = E[|N̂ |2]/E[|Ŷ |2], and apply (P̂ ∗P̂ + N)−1P̂ ∗ on Ŷ . This

results in a better estimate of X̂ [2].

A different approach to the deconvolution problem is to use iterative algorithms,

with the Richardson-Lucy algorithm [27, 35] being the most common algorithm of

this class. The main idea of the Richardson-Lucy algorithm is to estimate X using

the iterations X(t+1) = X(t) · ( Y
X(t)P

P̆ ), where P̆ is the flipped PSF, to be defined

later, and both the multiplication and the division are entry-wise. It is shown in [27]

that these iterations converge since the expression inside the parentheses approaches

unity as t grows. The main drawback of this algorithm is that it has a relatively slow
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convergence, and moreover, in the presence of noise, performing too many iterations

might actually amplify the noise [37], so fixing the right number of iterations is

critical. Several improvements to this algorithm were proposed, trying overcome

these drawbacks [7, 49]. Nevertheless, iterative deconvolution algorithms SAXS data

are performing poorly [45].

We now turn to discuss the large floor space issue mentioned above. To that

end, we first explain what is a scattering pattern. Photons arriving at a sample from

a fixed direction experience force arising from the atomic structure of the sample,

and are being scattered in various directions. The photons are then collected by a

camera, forming what is known as the scattering pattern of the sample. It turns out

that these directions are characterized by a single angle, 2θ, measured relative to the

X-ray beam (see Fig. 1.1), namely, there is an azimuthal symmetry of the scattering

pattern around a well defined center [11]. The main goal of SAXS experiments is

to find the distribution of scattered photons as a function of θ, with special interest

in small values of θ. Since the scattering angle of each photon cannot be measured

directly, the scattering pattern is analyzed in the following way: a photon arriving at

some point on the detector is characterized by the distance between the arriving point

and the center of the scattering pattern, and this distance is related to the scattering

angle of the photon using simple trigonometry (see Fig. 1.1), so any photon is related

to its scattering angle 2θ, and the distribution of angles can be inferred using multiple

photons.

However, the discrete nature of the detector puts some reservations on this de-

scription. Since pixels have finite size, each of the pixels corresponds to a range

of distances from the center, and hence to a range of scattering angles. So each

pixel produces the photon count corresponding to a range of scattering angles. The

sensitivity of a system in distinguishing small differences in θ is known as angular

resolution, and can be refined using a larger sample to detector distance. The reason

is once again trigonometry. Holding the angle fixed and increasing the sample to de-

tector distance increases the distance on the detector, and hence angles that where

indistinguishable are now mapped to different pixels. However, the long sample to

detector distance required to achieve high angular resolution comes at the expanse
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Figure 1.1: SAXS schematic setup. Image taken from [5]. Sample here is represented
by the capsule between the beam and the detector.

of large floor space, which may not be available in all facilities.

We now turn back to image processing point of view. According to the Nyquist

sampling theorem [28], the detector samples the scattering pattern at a spatial sam-

pling rate given by the pixel size, and hence frequencies beyond this limit cannot

be sampled. The multiframe super-resolution technique, originally proposed by Tsai

and Huang [43], aims to enrich the acquired spectral information beyond the Nyquist

limit, by taking several images of the same scene, while moving the detector in sub-

pixel translations. This idea is explained in a toy model shown in Fig 1.2. Assume we

acquire a single image (a) and find that a single pixel is illuminated. The red marker

represents the location where photons hit, however, this information is unavailable

since no sub-pixel information is at hand. Looking at image (a) without the red

marker, we can’t tell if the photons are uniformly spread across the entire pixel, or

are distributed otherwise in the pixel. Moving the detector half a pixel size to the

right (while holding the rest of the setup fixed) results in the image (b). Due to

the displacement of the detector, the photons are now hitting another pixel, and it

can be inferred that the photons are hitting the left half of the pixel they illuminate

(in (a)). Note that if the photons were distributed uniformly across the pixel, im-

age (b) would have had two illuminated pixels, with half intensity each. So, sub-pixel

information was achieved. This idea can be further extended by moving the detector

up, resulting in image (c), and up and right, resulting in image (d). The illuminated
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pixel is different in each of the acquired images, and from its relative displacements

between the acquisitions (frames) it can be inferred that all the photons are concen-

trated in the lower left corner of the illuminated pixel in (a). This technique is well

studied [30, 34, 20, 24, 44, 17, 9] and explained in details in [36], but in all cases

its underlying idea is to take several frames with sub-pixel displacement, align them

to one another (as we did by knowing the relative displacement) and then fuse the

frames into a single image. This enables us achieving better resolution. Returning

to our discussion above regarding the trade-off between angular resolution and floor

space, the improved resolution achieved by sub-pixel detector translations can be

traded for smaller sample to detector distances, and hence smaller floor space.

In this thesis, we propose taking multiple snapshots of a single X while using

different slit shapes. This results in multiple acquired signals Y , each corresponding

to a different PSF. The general idea of our algorithm is to use the measured PSFs

and the acquired Y s to set up a minimization problem, for which the underlying X is

a solution, show that this solution is unique, and show how to compute it efficiently.

This algorithm offers a solution to the low flux problem since is enables to capture a

rich portion of X’s spectrum and hence restore it with superior details. In addition,

in order to overcome the large floor space requirement, we propose using an ’off the

shelf’ protocol called ’multiframe super-resolution’ proposed by Farsiu et al. [36],

and cascade it with our proposed deconvolution algorithm. To our best knowledge,

our proposed algorithm is the first implementation of a multiframe super-resolution

SAXS system.

The remaining of the thesis is organized as follows. In Chapter 2, we present our

proposed algorithm. In Chapter 3, we present the numerical results for our algorithm

using simulated data (Section 3.2) and using measured SAXS data (Section 3.3).

Last, In Chapter 4, we summarize this work and propose some future directions.
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(a)

(b)

(c)

(d)

Figure 1.2: Toy example for the sub-pixel multiframe technique. (a) original image,
(b) image with sub-pixel detector translation of 1/2 pixel to the right, (c) image with
sub-pixel detector translation of 1/2 pixel up, and (d) image with sub-pixel detector
translation of 1/2 pixel to both up and right directions. The red marker represents
the true location of the hitting photons.
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Chapter 2

Proposed algorithm

Following the discussion in the previous chapter regarding the blurring of the mea-

sured scattering pattern incurred by any practical slit, we present a deconvolution

algorithm for estimating the scattering pattern of a given sample that is based on

measuring it using various slits, each corresponding to a different PSF. First, we

formulate the mathematical model underlying our estimation problem and propose

some naive solution for it. Then, we extend this solution to a more robust one, and

finally, we explain how to implement it efficiently.

As mentioned above, our approach is based on taking several images of the same

sample while varying the shape of the slits, namely the corresponding PSFs. Follow-

ing Eq. 1.1, we model the the acquired images as

Yi = X ∗ Pi +Ni, (2.1)

where i = 1, . . . ,m indexes the m acquired images, with image Yi corresponding

to the measured PSF Pi. Our goal is to recover a single image X common to all

acquired images Yi, which corresponds to the (noiseless and de-blurred) scattering

pattern of the imaged sample.

A direct least squares solution of Eq. 2.1 can be formulated as

X̄ = argmin
X

∑
i

||Yi − Pi ∗X||2F , (2.2)
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where ||.||F is the Frobenius norm given by ||A||F =
√∑

i,j A
2
i,j, and the convolution

operator is such that both X and Pi ∗ X are of the dimensions of Yi. However,

this formulation has several drawbacks. First, it weights all the acquired images

equivalently, despite the fact that some of them may contribute nothing but noise to

the estimated solution. Such acquired images arise when their corresponding PSFs

are too tight or too wide, as significant details of X are then either lost due to low

SNR or are blurred due to aggressive blur. In addition, Eq. 2.2 may be ill-conditioned

(as shown in [17] as well as below shortly), and does not take into account additional

known information about the underlying image X [21].

Thus, the significance of each image Yi in Eq. 2.1 needs to be controlled. This

in done by imposing a different weight on each Yi. The specific choice of these

weights should depend on the underlying scattering imageX, as the following thought

experiment demonstrates. Assuming a scattering pattern that has fine structures, the

PSFs used to resolve it must be as tight as possible, since wide PSFs will blur its fine

structures. Therefore, wide PSFs should be given lower weights by the algorithm.

On the other hand, if the scattering pattern is known to have no fine structures,

images taken with tight PSFs will suffer from low SNR, while not contributing fine

details to the recovered pattern. Our proposed weight function to be integrated into

Eq. 2.2 is presented below.

As for the fact that Eq. 2.2 may be ill-conditioned, we first show where does

this ill-conditioning come from. Since convolution is a linear operator, it can be

represented by a corresponding matrix [13], and Eq. 2.2 becomes

¯̃X = argmin
X̃

∑
i

||Ỹi − ΓiX̃||2F , (2.3)

where Γi is the matrix representation of Pi∗, and X̃ and Ỹi are vectors given by

column-stacking X and Yi, respectively. Now, differentiating Eq. 2.3 with respect

to X̃ and equating to zero, we get

2
∑
i

ΓTi (Ỹi − ΓiX̃) = 0, (2.4)
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or equivalently,

(
∑
i

ΓTi Γi)X̃ =
∑
i

ΓTi Ỹi. (2.5)

The matrix (
∑

i Γ
T
i Γi) is symmetric and positive semi-definite (SPSD). It is symmet-

ric since (ΓTi Γi)
T = ΓTi (ΓTi )T = ΓTi Γi, and it is positive semi-definite since

〈ΓTi ΓiX̃, X̃〉 = 〈ΓiX̃,ΓiX̃〉 = ||ΓiX̃||2 ≥ 0. (2.6)

Hence, all eigenvalues of ΓTi Γi are non-negative. Since a sum of SPSD matrices is

SPSD, we conclude that (
∑

i Γ
T
i Γi) is a SPSD matrix. However, since some eigan-

values of (
∑

i Γ
T
i Γi) might be small or even zero, Eq. 2.2 may be ill-conditioned.

We therefore present two modifications to Eq. 2.2. First, we weight the ith term

in Eq. 2.2 by a weight 2σ2
i (we choose the weights to be of this form instead of just σi

to simplify subsequent derivations). The specific choice of the σis is discussed in

Chapter 3. In addition, we add to Eq. 2.2 a ridge regularization term ν
2
||X||2F [12], to

ensure that the zero eigenvalue is avoided, as shown shortly (and again, the division

by 2 is for simplicity of derivation). Such a regularization term is natural for imagesX

that are smooth [21], i.e. have no sharp differences in intensities between neighboring

pixels. The resulting optimization problem is thus

X̄ = argmin
X

∑
i

||Yi − Pi ∗X||2F
2σ2

i

+
ν

2
||X||2F . (2.7)

In order to show the effect of the ridge regularization term on Eq. 2.7, we rewrite

it using the notation of Eq. 2.3 to get

¯̃X = argmin
X̃

∑
i

||Ỹi − ΓiX̃||2F
2σ2

i

+
ν

2
||X̃||2F . (2.8)

Differentiating the right-hand-side of Eq. 2.8 with respect to X̃ and equating the

result to zero gives (∑
i

ΓTi Γi
σ2
i

)
X̃ + νIX̃ =

∑
i

ΓTi Ỹi
σ2
i

, (2.9)
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which is a linear equation in X̃. Moreover, choosing ν > 0 we have

〈(
∑
i

ΓTi Γi
σ2
i

+ νI)X̃, X̃〉 =
∑
i

〈Γ
T
i Γi
σ2
i

X̃, X̃〉+ 〈νIX̃, X̃〉

=
∑
i

〈Γi
σi
X̃,

Γi
σi
X̃〉+ ν〈X̃, X̃〉

=
∑
i

||Γi
σi
X̃||2 + ν||X̃||2 ≥ ν||X̃||2 > 0.

Thus, the eigenvalues of (
∑

i
ΓTi Γi
σ2
i

+νI) are strictly positive (unlike those of
∑

i Γ
T
i Γi

that correspond to Eq. 2.3), and in particular, the solution of Eq. 2.7 is unique.

Moreover, the regularization parameter ν can be used to control the condition number

of the optimization problem in Eq. 2.7.

From a complexity point of view, a direct solution of Eq. 2.9 (using, for example,

Gaussian elimination) is prohibitive, due to the size of the matrices involved. For

example, the convolution of an n×n sized image with an l× l sized PSF transforms

into a corresponding matrix multiplication representation in which an (l2+n2−1)×n2

sized matrix multiplies an n2 × 1 sized vector [13]. Assuming n� l, the complexity

of this multiplication is O(n4) operations (for naive matrix multiplication), which is

intractable for practical image sizes.

To efficiently solve Eq. 2.7, we rewrite it in a different form. For a set of measured

PSFs P1, . . . , Pm, we define P to be the operator acting on images by

P [·] :=



P1 ∗ [·]
P2 ∗ [·]

...

Pm ∗ [·]
√
νI[·]


, (2.10)

and in a similar way, we stack the measured images as Y = [Y T
1 , Y

T
2 , . . . , Y

T
m , 0]T .
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Using this notation, Eq. 2.7 becomes

X̄ = argmin
X
||R(PX − Y)||2F = argmin

X

∥∥∥∥∥∥∥∥∥∥∥∥∥
R



P1 ∗X − Y1

P2 ∗X − Y2

...
...

Pm ∗X − Ym√
νIX − 0



∥∥∥∥∥∥∥∥∥∥∥∥∥

2

F

, (2.11)

where R is a diagonal matrix given by

R =
1√
2

diag(σ−1
1 I σ−1

2 I . . . σ−1
m I I).

Note that the last row of Eq. 2.11 corresponds to the regularization term. Again, in

order to solve Eq. 2.11, we differentiate its rightmost term with respect to X to get

(RP)TR(PX − Y), and by equating the latter to zero and using the diagonal form

of R, we get the normal equations [8]

PTR2PX = PTR2Y , (2.12)

where PT is the adjoint operator of P , given explicitly below in Lemma 2.1. Equa-

tion 2.12 is linear in X, and we intend to solve it using the conjugate gradients

algorithm [15]. This algorithm requires the operator acting on the unknown vector

to be symmetric and positive definite (SPD), as was shown above to hold in our case.

The conjugate gradients algorithm applies in each of its iterations the operator

PTR2P (the operator on the left-hand-side of Eq. 2.12) to some vector. Since this

operator consists of convolutions (see Eq. 2.10 and Lemma 2.1 below), we can ef-

ficiently apply it using the Fast Fourier Transform algorithm [4] using O(n2 log2 n)

operations per iteration, where n× n in the size of the acquired images.

We next derive the explicit form of the operator PT from Eq. 2.12, and show that

it can be computed using convolutions.
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Lemma 2.1. Let P be the operator defined in Eq. 2.10. Its adjoint PT is given by

PTT = PT


T1

T2

...

Tm+1

 =
( m∑
k=1

Tk ∗ P̆k
)

+
√
ν · Tm+1, (2.13)

where [P̆k]i,j := [Pk]−i,−j is the kth acquired PSF being flipped in both dimensions.

Proof. For a pair of images X and Y (indexed symmetrically around zero) of size

w × z, where w and z are odd positive integers, we define (assuming implicit zero

padding whenever needed)

[X ∗ Y ]i,j =

w−1
2∑

l=−w−1
2

z−1
2∑

f=− z−1
2

Xi−l,j−fYl,f . (2.14)

for i ∈ {−w−1
2
,−w−1

2
+ 1, . . . , w−1

2
}, and j ∈ {− z−1

2
,− z−1

2
+ 1, . . . , z−1

2
}. Using this

indexing scheme, the product of X and Y as matrices is given by

[XY T ]i,j =

z−1
2∑

f=− z−1
2

Xi,f [Y
T ]f,j, (2.15)

with same ranges for i and j as before. Note that this definition of matrix multipli-

cation is consistent with the standard definition of matrix multiplication, but uses

indexes that are symmetric around 0. With a slight abuse of notation (due to the

use of negative indices), we denote X, Y ∈ Rw×z.

Next, we recall the definition of the Frobineus inner product. For a pair of

matrices X = [XT
1 , X

T
2 , . . . , X

T
m+1]T and T = [T T1 , T

T
2 , . . . , T

T
m+1]T with Xi, Ti ∈

Rw×z, i ∈ {1, . . . ,m+ 1}, we define
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〈X , T 〉F =

〈
X1

X2

...

Xm+1

 ,


T1

T2

...

Tm+1


〉

F = Tr(X TT ) =

z−1
2∑

i=− z−1
2

[X TT ]ii. (2.16)

Also, we can use the block structure of X and T in Eq. 2.16 to get

〈X , T 〉F = Tr(X TT ) = Tr

((
XT

1 X
T
2 · · · XT

m+1

)


T1

T2

...

Tm+1


)

(2.17)

= Tr
(m+1∑
k=1

XT
k Tk

)
=

m+1∑
k=1

Tr(XT
k Tk).

Now, in order to prove that PT , given by Eq. 2.13, is the adjoint operator of P ,

we need to show that for any X ∈ Rw×z and any T = [T T1 , . . . , T
T
m+1]T ∈ Rw×z×(m+1),

it holds that

〈PX, T 〉F = 〈X,PTT 〉F . (2.18)
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Using the definition of PX in Eq. 2.10 together with Eq. 2.17, we write

〈PX, T 〉F =

〈


P1 ∗X
P2 ∗X

...

Pm ∗X√
νX


,



T1

T2

...

Tm

Tm+1


〉

F (2.19)

=
m∑
k=1

Tr
(
(Pk ∗X)TTk

)
+ Tr(

√
νXTTm+1) (2.20)

=
m∑
k=1

z−1
2∑

i=− z−1
2

[(Pk ∗X)TTk]ii +

z−1
2∑

i=− z−1
2

[
√
νXTTm+1]ii, (2.21)

where Eq. 2.20 follows from Eq. 2.17, and Eq. 2.21 follows from the definition of

the trace function. For simplicity of notation, we won’t carry the additive term
√
νXT · Tm+1 along the proof, but rather return to it at the end.

Expanding the product in Eq. 2.21, using Eq. 2.15 we get

m∑
k=1

( z−1
2∑

i=− z−1
2

[(Pk ∗X)TTk]ii

)
=

m∑
k=1

( z−1
2∑

i=− z−1
2

( w−1
2∑

j=−w−1
2

[(Pk ∗X)T ]ij · [Tk]ji
))

. (2.22)

Continuing with the right-hand-side of Eq. 2.22, expending the convolution term by

using Eq. 2.14, we have

m∑
k=1

( z−1
2∑

i=− z−1
2

( w−1
2∑

j=−w−1
2

[(Pk ∗X)T ]ij · [Tk]ji
))

=

m∑
k=1

( z−1
2∑

i=− z−1
2

( w−1
2∑

j=−w−1
2

( z−1
2∑

f=− z−1
2

w−1
2∑

l=−w−1
2

[Pk]j−l,i−f ·Xlf

)
· [Tk]ji

))
.

(2.23)

Since Xlf , [Pk]j−l,i−f and [Tk]ji are numbers, their multiplication is commutative.

Switching their order and using the definition of P̆k from Eq. 2.13, we get from
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Eq. 2.23 that

m∑
k=1

( z−1
2∑

i=− z−1
2

( w−1
2∑

j=−w−1
2

( z−1
2∑

f=− z−1
2

w−1
2∑

l=−w−1
2

[Pk]j−l,i−f ·Xlf

)
· [Tk]ji

))
=

m∑
k=1

( z−1
2∑

i=− z−1
2

( w−1
2∑

j=−w−1
2

( z−1
2∑

f=− z−1
2

w−1
2∑

l=−w−1
2

Xlf · [P̆k]l−j,f−i
)
· [Tk]ji

))
. (2.24)

Next, we switch the order of summation in Eq. 2.24, and by noting that

z−1
2∑

i=− z−1
2

w−1
2∑

j=−w−1
2

[P̆k]l−j,f−i · [Tk]ji = [P̆k ∗ Tk]lf ,

we get

m∑
k=1

( z−1
2∑

i=− z−1
2

( w−1
2∑

j=−w−1
2

( z−1
2∑

f=− z−1
2

w−1
2∑

l=−w−1
2

Xlf · [P̆k]l−j,f−i
)
· [Tk]ji

))
=

m∑
k=1

( z−1
2∑

f=− z−1
2

( w−1
2∑

l=−w−1
2

Xlf ·
( z−1

2∑
i=− z−1

2

w−1
2∑

j=−w−1
2

[P̆k]l−j,f−i · [Tk]ji
)))

m∑
k=1

( z−1
2∑

f=− z−1
2

( w−1
2∑

l=−w−1
2

Xlf · [P̆k ∗ Tk]lf
))

. (2.25)

The innermost sum in Eq 2.25 is written using matrix multiplication (Eq. 2.15) as

w−1
2∑

l=−w−1
2

Xlf · [P̆k ∗ Tk]lf =

w−1
2∑

l=−w−1
2

XT
fl · [P̆k ∗ Tk]lf = [XT (P̆k ∗ Tk)]ff ,
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and therefore, Eq. 2.25 becomes

m∑
k=1

( z−1
2∑

f=− z−1
2

( w−1
2∑

l=−w−1
2

Xlf · [P̆k ∗ Tk]lf
))

=
m∑
k=1

( z−1
2∑

f=− z−1
2

[XT (P̆k ∗ Tk)]ff
)
. (2.26)

Since X is independent of k, we can switch the order of summation once again to

get
m∑
k=1

( z−1
2∑

f=− z−1
2

[XT (P̆k ∗ Tk)]ff
)

=

z−1
2∑

f=− z−1
2

[XT
( m∑
k=1

P̆k ∗ Tk
)

]ff . (2.27)

Finally, we bring back the additive term
√
νXT · Tm+1 from Eq. 2.20, which could

have been carried throughout the entire proof without affecting it. This results in

z−1
2∑

f=− z−1
2

[XT
( m∑
k=1

P̆k ∗ Tk
)

]ff +

z−1
2∑

f=− z−1
2

[
√
νXT · Tm+1]ff =

z−1
2∑

f=− z−1
2

(
[XT

( m∑
k=1

P̆k ∗ Tk
)
]ff + [

√
νXT · Tm+1]ff

)
=

z−1
2∑

f=− z−1
2

[XT
( m∑
k=1

P̆k ∗ Tk +
√
νTm+1

)
]ff ,

(2.28)

Recalling the definition of PT from Eq. 2.13, PT =
∑m

k=1 P̆k ∗ Tk +
√
νTm+1, we get

from Eq. 2.28 that

z−1
2∑

f=− z−1
2

[XT
( m∑
k=1

P̆k ∗ Tk +
√
νTm+1

)
]ff =

z−1
2∑

f=− z−1
2

[XT
(
PTT

)
]ff

= Tr
(
XT (PTT )

)
= 〈X,PTT 〉F .

(2.29)

Summing up Eqs. 2.19–2.29 gives us the equality in Eq. 2.18 as required.
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Chapter 3

Experiments

In this chapter, we demonstrate the performance of our proposed algorithm using

both simulated data, where scattering patterns are simulated according to a known

model, as well as using experimental SAXS measurements. For all datasets (sim-

ulated and experimental), we apply two versions of the proposed algorithm. First,

we apply the algorithm proposed in Chapter 2 as is, and second, we apply a super-

resolution version of it, as described in Chapter 1 and explained again below. We ap-

ply both algorithms (with and without super-resolution) in order to evaluate whether

our proposed algorithm has advantages on its own, and whether combining it with

the super-resolution procedure further improves the results.

In Chapter 1, we have proposed cascading our algorithm with an “off the shelf”

super-resolution algorithm (described in [36]). In the super-resolution algorithm,

we take multiple images for each given PSF, while moving the detector in sub-

pixel translations. The advantage of this algorithm is demonstrated in Fig. 1.2.

Throughout our subsequent experiments, we apply sub-pixel translations of 1/3 pixel

size, and use the super-resolution algorithm to combine the resulting 9 images into a

single high-resolution image. Performing the above for each PSF separately results

in several high resolution images, each corresponding to a different PSF. These high

resolution images are the input to the algorithm proposed in Chapter 2.

In order to distinguish between the two different versions of the proposed algo-

rithm (with and without super-resolution preprocessing), we label them as follows.
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The algorithm described in Chapter 2 (without super-resolution preprocessing) is

named ’Constrained Multi Deconvolution’ (CMD), since the deconvolution is ap-

plied to a set of scattering patterns in which all of them are constrained by the same

underlying scattering pattern X. The version where a super-resolution algorithm is

applied prior to the CMD algorithm is named ’Super-Resolution SAXS’ (srSAXS).

For comparison, we also apply to the input data the super-resolution algorithm [36]

without performing any further deconvolution. Such results are labelled ’SPS’ for

Sub-Pixel Sampling.

Before presenting the results of our algorithm, we first present in Section 3.1 the

measures used to evaluate its performance. Then, we present simulation results in

Section 3.2, and finally, we present results for experimental SAXS data in Section 3.3.

3.1 Performance evaluation

We use several measures to assess the quality of an estimated scattering pattern. If

the underlying scattering pattern is known (X in Eq. 2.1), it is possible to compare

the recovered scattering pattern X̄ to X using the Frobenius norm

ε =
||X̄ −X||F
||X||F

. (3.1)

However, for cases where X is unknown (for example, when applying our algorithms

to experimental SAXS data), a different measure is required. To develop such a

measure, we first lay some additional assumptions on X.

As previously discussed, many scattering patterns have radial symmetry, and

therefore, we only need to recover their one-dimensional radial profile. To compute

the radial profile of a scattering pattern, we first estimate the center of the latter

using its two-dimensional auto-correlation. Then, we compute the one-dimensional

radial profile of the scattering pattern using azimuthal integration around its center

as follows. Denote by (ic, jc) ∈ {−w−1
2
, . . . , w−1

2
× − z−1

2
, . . . , z−1

2
} the pixel which is

the estimated center of the scattering pattern. Then, the radial profile IX [r] of X is
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given by

IX [r] = |Qr|−1
∑
p∈Qr

X[p], r ∈ {1, 1 + s, 1 + 2s, · · · , rmax},

Qr =
{

(i, j) | i ∈ {−w − 1

2
, . . . ,

w − 1

2
}, j ∈ {−z − 1

2
, . . . ,

z − 1

2
},

(i− ic)2 + (j − jc)2 ∈ ((r − s)2, r2]
}
,

(3.2)

where X ∈ Rw×z is the scattering pattern, s is the sampling interval of IX [r], set

to 1/2 in the remaining of the chapter, and rmax is set to min(ic, jc, w − ic, z −
jc), representing the minimal distance of the center to the edges of the scattering

pattern X.

The radial profile representation of a scattering pattern is very common in SAXS

data processing [3, 14, 16, 18, 19, 23, 25, 26, 32, 41], as it is less noisy compared

to the two-dimensional scattering pattern. The reason for the reduced noise is that

while the signal in a two-dimensional scattering pattern has azimuthal symmetry,

the noise in it is spread without any symmetry, and so by averaging in the azimuthal

direction, the noise is being suppressed following the Central Limit Theorem.

Typically, IX [r] is characterized by several extrema points, whose magnitude

decreases with increasing r [19, 23]. We use this fact to define a quality measure of a

scattering pattern X using its radial profile IX [r], and denote this measure by ζ. In

the following, we refer to local maxima as ’peaks’, and to local minima as ’valleys’.

Let X be a scattering pattern with radial profile IX [r], and let {I1, . . . , Ik} be the

heights of the peaks of IX [r], with corresponding radii {r1, . . . , rk}. If IX [r] has a

single peak (i.e. k = 1), we define our quality measure to be 0, that is, ζ = 0. Else,

we label the maximum over {I1, . . . , Ik} by Ip1 , and its corresponding radius by rp1 .

Next, we define

rp2 = argmin
i∈{1,...,k}
ri 6=rp1

|ri − rp1|,

and denote the height of the peak that corresponds to rp2 by Ip2 . Since IX [r] is

continuous, there must exist a valley between the two peaks Ip1 and Ip2 . We label
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the value of IX [r] at this valley by Iv, and the radius of the valley by rv. Finally we

define the quality measure by

ζX =
Ip2 − Iv
|rp2 − rv|

. (3.3)

Note that ζ ≥ 0, since the numerator is positive (the peak is higher than the valley),

and the denominator is an absolute value.

We demonstrate the intuition behind this measure using a toy example. Let X be

a scattering pattern with a corresponding radial profile IX , and suppose that IX [r]

has only one pair of peaks with Ip1 = Ip2 = 1, with |rp1 − rp2 | = 4. Since IX [r]

is continuous, it has a single valley, and we further assume that Iv = 0.4 and that

|rp2 − rv| = 2. The quality measure of IX [r] is then calculated using Eq. 3.3 to be

ζX = 1−0.4
2

= 3/10. Figure 3.1 presents such a simulated IX [r] as the blue curve,

with X shown in the inset. The exact model used to simulate X is described later,

and is of no relevance for now. Next, let Y1 and Y2 be blurred scattering patterns

that are generated from X according to Eq. 2.1. The PSFs that are used to generate

Y1 and Y2 are

P1 =
1

18


1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

 , P2 =
1

8

 1 1 1 1

1 1 1 1

1 1 1 1

 , (3.4)

respectively, where the coefficients 1
18

and 1
8

are discussed later. We present the

corresponding radial profiles IY1 [r] and IY2 [r] as the red and yellow curves in Fig. 3.1,

respectively. One can notice that the two separate peaks in IX [r] completely vanish

in IY1 [r], and hence the quality measure of IY1 [r] is ζY1 = 0. As of IY2 [r], it has two

peaks with a valley between them, which is shallower than that of IX . The quality

measure of IY2 [r] is ζY2 = 0.09, which is lower than that of IX .

In order to calculate the quality measure of Eq. 3.3, we implement the following
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Figure 3.1: Radial profile demonstrating ζ of Eq. 3.3. Blue curve shows IX , with
good separation between the peaks and with ζX = 3/10; red curve shows IY1 with
no separation between the peaks, corresponding to ζY1 = 0; yellow curve shows IY2 ,
with poor separation between the peaks, and with corresponding ζY2 = 0.09. The
inset shows the original scattering pattern X.

algorithmt. Let X be some scattering pattern. We first compute its radial profile

IX [r] using Eq. 3.2. Next, we normalize IX [r] such that it’s highest peak is equal to 1.

This normalization assures that all radial profiles are of the same scale, and results

in values of ζ which can be compared across different PSFs (as different PSFs might

result in different scalings of IX [r]). It also enables us to neglect the coefficients of P1

and P2 in Eq. 3.4 that where used for the same reason. In order to find the number

of peaks in IX [r], we use Matlab’s findpeaks function and set MinPeakHeight= 0.3

to avoid spurious peaks due to noise. The findpeaks function results in peaks’

values {I1, . . . , Ik} and their corresponding radii {r1, . . . , rk}. If the number of peaks

is 1, we set ζ = 0. Else, we find the maximal peak using Matlab’s max function,

and label the highest peak by Ip1 and it’s corresponding r value by rp1 . In order to

find the closest peak to Ip1 among {I1, . . . , Ik}, we use min(abs(ri − rp1)) on the

set {r1, . . . , rk}, with rp1 excluded from the set. The radius corresponding to the

minimum of the latter expression is labeled rp2 and the corresponding Ii is labeled

Ip2 . Now we are at a position of finding the valley between the peaks. Having rp1
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and rp2 at hand, we find the minimal value over all IX [r] for r ∈ {rp1 , . . . , rp2}, using

Matlab’s min function, label it by Iv and the corresponding radius by rv. Finally, we

calculate ζ using Eq. 3.3.

3.2 Simulations

In this section, we first demonstrate our algorithm using simulated data, which fol-

lows the model in Eq. 2.1, that is,

Yi = X ∗ Pi +Ni.

We next describe how we simulate the “ground-truth” signal X, the PSFs Pi, and

the noise Ni. We assume that the underlying signal X has radial symmetry (as

discussed above), and model it as a linear combination of Cauchy distributions [1],

as these are common in modeling scattering patterns [42]. Specifically, our ground-

truth scattering pattern is given in polar coordinates by

X(r) =
2∑
i=1

Ii(r|ri0, γi, Di), Ii(r|ri0, γi, Di) = Di
[ (γi)2

(r − ri0)2 + (γi)2

]
, (3.5)

where Di controls the height of the peak of Ii, r
i
0 controls the location of the peak,

and γi determines its width (see Fig 3.2). Note that in order to fix the height of the

peak of Ii(r|ri0, γi, Di) to Di, we use a different normalization than the traditional

normalization of Cauchy distributions [1]. Our simulated ground-truth scattering

pattern is obtained by sampling X(r) of Eq. 3.5 on a discrete grid, with r = 0

corresponding to the center of the discrete grid. We denote the resulting discrete

scattering pattern by XGT . The parameters used for the different terms Ii in Eq. 3.5

are given in Table 3.1. To simulate the input to the super-resolution algorithm,

we translate each term Ii(r|ri0, γi, Di) in Eq. 3.5 by {−1/3, 0, 1/3} pixels in each

dimension prior to sampling. This results in 8 additional ground-truth scattering

patterns whose centers are displaced by 1/3 pixel in each dimension.

Next, we simulate the PSFs Pi. We describe the derivation of a one-dimensional
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Figure 3.2: Cauchy distribution I(r) used to generate the ground-truth scattering
pattern XGT . Following the notation in Eq. 3.5, D controls the height of the peak,
r0 its location, and γ its width (at I(r) = D/2).

γ 1 1
r0 29 35
D 1 0.5

Table 3.1: Parameters used to generate XGT using Eq. 3.5.

PSF, as its extension to two dimensions is trivial. Having a pinhole-like slit, it is

common to assume its resulting PSF to be Gaussian [50], given by

P (x) =
1√
πβ

exp
(
− x2

β2

)
, (3.6)

where P (x) is the intensity measured on a continuous detector, x ∈ R is the distance

on the detector from the center of the beam, and β > 0 is a parameter that is referred

to as the ’sharpness’ of the PSF, as it controls the steepness of the Gaussian; since

max(dP (x)
dx

) =
√

2
πβ4 exp(−1/2), the smaller β the sharper the incline of P (x) is.

However, the model in Eq. 3.6 is not sufficient for our setup, since our slit is not

pinhole-like. As described in Chapter 1, we control the shape of the slit in order

to produce a set of measured scattering patterns Yi (Eq. 2.1) out of a single X,

and hence, we need to simulate the PSFs Pis for rectangular slits of varying sizes.
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Although the PSF of a system is defined as the measured signal on the detector for

light arriving from a single point, we “abuse” this term and name all the following

Pis of Eq. 2.1 as PSFs.

In the following, we derive the expression for the PSF of a given rectangular slit.

Let  L be a linear, shift-invariant operator that returns the PSF of a given slit. We

derive an explicit formula for  L for the case of a rectangular input slit. We start by

deriving  L for a pinhole-like slit. Let us model a pinhole-like slit by Dirac’s delta

function δ(x), that is defined to be 0 whenever x 6= 0 and by the identity∫
R
δ(x)f(x)dx = f(0), (3.7)

for any function f that is continuous at the origin [29]. Since Eq. 3.6 specifies the

PSF for a pinhole-like slit, we can write

 L[δ(x)] =
1√
πβ

exp
(
− x2

β2

)
. (3.8)

In order to find the PSF of a rectangular slit, we first model the rectangular

slit by the rectangle function Π(x/2α), that is defined to be 1 when |x| < α and 0

otherwise [47]. Using Eq. 3.7, we deduce ([29]) that

f(x) =

∫
R
f(u)δ(x− u)du,

and specifically, for the rectangle function Π(x/2α) we have that

Π
( x

2α

)
=

∫
R

Π
( u

2α

)
δ(x− u)du. (3.9)
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Using the linearity of  L together with Eqs. 3.8 and 3.9 we get

 L
[
Π
( x

2α

)]
=  L

[∫
R

Π
( u

2α

)
δ(x− u)du

]
=

∫
R

Π
( u

2α

)
 L
[
δ(x− u)

]
du,

=

∫
R

Π
( u

2α

) 1√
πβ

exp
(
− (x− u)2

β2

)
du. (3.10)

In order to get an explicit expression for  L
[
Π
(
x

2α

)]
, we change variable u → x − t

in Eq. 3.10 to get

 L
[
Π
( x

2α

)]
=

∫
R

Π
( u

2α

) 1√
πβ

exp
(
− (x− u)2

β2

)
du

=
1√
πβ

∫ −∞
∞

Π
(x− t

2α

)
exp

(
− t2

β2

)
d(−t)

=
1√
πβ

∫ ∞
−∞

Π
(x− t

2α

)
exp

(
− t2

β2

)
dt

=
1√
πβ

∫ α+x

x−α
exp

(
− t2

β2

)
dt, (3.11)

where Eq. 3.11 follows since Π
(
x−u
2α

)
= 1 whenever |x − t| < α and 0 otherwise.

Thus, we get

 L
[
Π
( x

2α

)]
=

1√
πβ

∫ α+x

x−α
exp

(
− t2

β2

)
dt

=
1√
πβ

[∫ 0

x−α
exp

(
− t2

β2

)
dt+

∫ x+α

0

exp
(
− t2

β2

)
dt

]

=
1√
πβ

[
−
∫ α−x

0

exp
(
− (−u)2

β2

)
d(−u) +

∫ x+α

0

exp
(
− t2

β2

)
dt

]

=
1√
πβ

[∫ α−x

0

exp
(
− u2

β2

)
du+

∫ x+α

0

exp
(
− u2

β2

)
du

]
. (3.12)
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label 1 2 3 4

α 1.0 1.5 2.0 2.5
β 0.1 1.6 3.1 4.6

Table 3.2: Parameters used to generate simulated PSFs using Eq. 3.13. The first
row is used to label the different PSFs.
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Figure 3.3: Different 1D PSFs used to generate 2D PSFs. Blue curve (α, β) =
(1.0, 0.1) ; red curve (α, β) = (1.5, 1.6); yellow curve (α, β) = (2.0, 3.1); purple curve
(α, β) = (2.5, 4.6).

Finally, we use the change of variable u→ βt in Eq. 3.12 to conclude that

 L
[
Π
( x

2α

)]
=

1√
πβ

[∫ α−x

0

exp
(
− u2

β2

)
du+

∫ x+α

0

exp
(
− u2

β2

)
du

]

=
1√
πβ

[∫ α−x
β

0

exp
(
− t2

)
βdt+

∫ x+α
β

0

exp
(
− t2

)
βdt

]
=

1

2

[
erf
(α− x

β

)
+ erf

(α + x

β

)]
,

(3.13)

where erf(x) = 2√
π

∫ x
0

exp(−t2)dt is the error function.

Throughout this section, we use Eq. 3.13 to simulate 1D PSFs by sampling

x ∈ [−8, 8] at 19 equally spaced points, using the parameters α and β specified

in Table 3.2. The resulting 1D PSFs are presented in Fig 3.3. In order to simulate a

2D PSF, two 1D PSFs are applied in the x and y directions independently, resulting

in 16 different 2D PSFs.
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Summing up the above, in order to simulate scattering patterns Yi, we use Eq. 2.1

to form

Yi = XGT ∗ Pi +Ni (3.14)

for i ∈ {1, ..., 16}, where XGT is the underlying scattering pattern generated using

Eq. 3.5, and Ni consists of i.i.d Gaussian random samples with mean 0 and variance

1/4.

We next apply the CMD algorithm to our simulated data. Recall that the CMD

algorithm solves (see Eq. 2.7)

X̄ = argmin
X

∑
i

||Yi − Pi ∗X||2F
2σ2

i

+
ν

2
||X||2F .

We determine σi (the weight corresponding to Yi) and the regularization parameter ν

as follows. Recalling that Yi ∈ Rw×z, we define

Si = 1
T
z Yi1w, where 1n = [1, 1, . . . , 1︸ ︷︷ ︸

n

]T , (3.15)

that is Si is the total intensity of Yi, and set

σi = exp
(
− (Si − µS̄)2

(ψS̄)2

)
, S̄ =

1

16

16∑
i=1

Si, (3.16)

where 16 is the number of input scattering patterns Yi used by the CMD algorithm.

We set ψ = 3/10, µ = 3/10, and discuss this choice later in this section. The regu-

larization parameter ν is set to 0.05. The method of choosing σi and ν is discussed

later in this section. Using these parameters, we ran the CMD algorithm on the

simulated scattering patterns Yi, and calculated the quality of the recovered scatter-

ing pattern X̄ to be ζX̄ = 0.13 (using Eq. 3.3). For comparison, we calculated the

quality of two additional simulated scattering patterns. The ground truth scattering

pattern XGT that was used to simulate the scattering patterns Yi has ζXGT = 0.17.

The scattering pattern Y ∗ that has the largest ζ among all Yis has ζY ∗ = 0.12. The
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Figure 3.4: Results of the CMD algorithm on simulated data with Gaussian noise.
(a) Radial profiles of (b)–(e). (b) Ground truth scattering pattern (XGT in Eq.
3.14). (c) Scattering pattern recovered by the CMD algorithm, X̄. (d) The scattering
pattern Y ∗ that has the largest ζ among all Yis. (e) Some other scattering pattern Yi.
One can notice that unlike the other curves in (a), the radial profile that corresponds
to this Yi (purple curve in (a)) exhibits no local minimum.

results of this experiment are summarized in Fig. 3.4.

These results are encouraging, since the value of ζX̄ for the scattering pattern

estimated by the CMD algorithm exceeds that of Y ∗, implying that using the CMD

algorithm is advantageous. To further evaluate the performance of our algorithm,

we would like to deviate from our noise model described in Chapter 1, and test the

CMD algorithm under a more realistic model. As we have pointed out in Chapter 1,

we are using Gaussian statistics as an approximation of a Poisson process taking

place at each pixel of the detector. To get a more realistic model, we will generate

our data Yi using a simulation of this Poisson process. This will also allow us to take

into account the exposure time t described in Chapter 1, which was not taken into
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account so far.

To define our improved model, we start by generating a realization of XGT by

Xt[i, j] = poissrnd(t ·XGT [i, j]), (3.17)

where poissrnd is Matlab’s function that realizes Poisson random variables, and t

simulates the exposure time. While using this model for XGT gives a more realistic

noise model whenever a signal exists (when XGT > 0), it reduces the noise to zero

when the signal vanishes. This happens since P (Poiss(0) = 0) = 1, where Poiss(ξ)

is a Poisson random variable with parameter ξ [1], so using Eq. 3.17 gives Xt[i, j] = 0

whenever XGT [i, j] = 0, independent of the exposure time t. Since this behavior is

physically false, we introduce into our model additional background noise (N in

Eq. 2.1). In order to do so, we start by defining a radial profile

IBKG[r] =

Ar−B r > rmin,

0 otherwise,
(3.18)

where this form of IBKG[r] and the choice of A, B and rmin are discussed in the

following. Next, we construct a matrix NBKG out of IBKG[r] where NBKG[i, j] =

IBKG[
√
i2 + j2], and finally, we use Eq. 3.17 to generate a Poisson realization ofNBKG

given by Nt[i, j] = poissrnd(t ·NBKG[i, j]).

In order to determine the functional form of IBKG in Eq. 3.18, we used experi-

mental scattering patterns Yi (described later in Section 3.3), and specifically, their

corresponding radial profiles IYi [r], calculated using Eq. 3.2. Recall that any such

radial profile consists of peaks and valley (as discussed above Eq. 3.3, and demon-

strated in Fig. 3.5). Having a radial profile IYi [r], we manually picked 2 points at each

valley, for a total of 16 points, and fitted this set of points to the model of Eq. 3.18

using least squares fitting. Few IYis are presented in Fig. 3.5 (solid lines) together

with the fitted functions IBKG (dashed lines). The values A = 3 and B = 0.3 were

chosen as the median over all As and Bs found for the experimental data. As one

can notice, defining IBKG[r] = Ar−B results in a singularity for r → 0, and in order
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Figure 3.5: Radial profiles of measured AgBh samples corresponding to different
PSFs, used to fit IBKG of Eq. 3.18. The presented Yis correspond to slit sizes of
0.6 mm× 0.6 mm, 0.8 mm× 0.8 mm and 1 mm× 1 mm. Dashed lines are the fitted
IBKG corresponding to A = 0.99, 2.60, 5.30 and B = 0.29, 0.33, 0.39, respectively.

to cope with it, we set IBKG[r < rmin] = 0, where rmin was set to 20.

Summing up the above, in order to simulate a “measured” scattering pattern Yi,

we generate a ground truth scattering pattern XGT , set an exposure time t, and

use Eq. 3.17 to generate a scattering pattern Xt. Then, we generate NBKG using

IBKG[r] of Eq. 3.18, and its Poisson realization Nt using the same t as for Xt. Next,

we simulate the different PSFs Pi by using the parameters of Table 3.2 in Eq. 3.13,

as explained above, and use Eq. 2.1 to form

Yi = [Xt]i ∗ Pi + [Nt]i, (3.19)

where [Xt]i and [Nt]i are Xt and Nt created separately for each i. In order to simulate

input scattering patterns for the srSAXS algorithm, we modify XGT as follows. So
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far, XGT [i, j] was defied by XGT [i, j] = IXGT [
√
i2 + j2], so in order to simulate sub-

pixel translations, we set

Xk
GT [i, j] = IXGT [

√
(i+ ηk)2 + (j + ρk)2], (3.20)

where ηk, ρk ∈ {±1
3
, 0}, k ∈ {1, . . . , 9}. One can notice that by setting η1 = ρ1 = 0,

we get XGT , and by using 8 additional distinct pairs of ηk and ρk, we simulate the

required sub-pixel translations. Next, we use Eq. 3.17 to generate a Poisson realiza-

tion of Xk
GT , denoted Xk

t . The noise term Nk
BKG is simulated out of IBKG (Eq. 3.18)

in the same manner as Eq. 3.20, (9 different times with sub-pixel translations), and

Eq. 3.17 is used to generate the Poisson realization Nk
t . Finally, a set of Yis for the

srSAXS algorithm is simulated by

Y k
i = [Xt]

k
i ∗ Pi + [Nt]

k
i ,

where k ∈ {1, . . . , 9} for the different sub-pixel translation, and i ∈ {1, . . . , 16} for

the different PSFs.

Using the simulated data sets, we are now at a position of tuning the various

parameters of the CMD algorithm:

• the weight σi for each Yi (see Eq. 2.7),

• the regularization parameter ν (see Eq. 2.7),

• the exposure time t of the simulation (see Eq. 3.17),

• number of Yis.

In the following, we explain how these parameters were optimized to yield the best

recovered scattering pattern X̄ (Eq. 2.7), in terms of the largest ζX̄ (Eq. 3.3) or

smallest ε (Eq. 3.1). We emphasize that the following optimization process should

be applied to each set of Yis separately.
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We begin by recalling Eq. 2.7

X̄ = argmin
X

∑
i

||Yi − Pi ∗X||2F
2σ2

i

+
ν

2
||X||2F ,

where σi and ν are parameters to be tuned. In order to demonstrate the relation

between the parameters σi and ν and the quality measure ζX̄ of the recovered scat-

tering pattern, we simulate a data set {Yi}16
i=1 using Eq. 3.19, where XGT is given by

Eq. 3.5 using the parameters in Table 3.1, and the set of PSFs is given by Eq. 3.13

using the parameters given in Table 3.2. Recalling that the total intensity of Yi is Si

(Eq. 3.15), we repeat here Eq. 3.16, which defines the σis as

σi = exp

(
− (Si − µS̄)2

(ψS̄)2

)
, S̄ =

1

16

16∑
j=1

Sj, (3.21)

where 16 is the number of Yis in the data set, and ψ and µ are parameters to be set.

Three examples of sets {σi}16
i=1 are presented in Fig. 3.6a for ψ = 0.3;µ = 0.3 (blue

curve), ψ = 0.3;µ = 1 (red curve), and ψ = 0.3;µ = 3 (green curve). In order to

understand the relation between µ, ψ and ν and the resulting ζX̄ , we repeatedly apply

the CMD algorithm to the simulated data set {Yi}16
i=1, while using different values

of µ, ψ and ν for each run of the CMD algorithm. This is done using logaritmicaly

spaced values of µ ∈ [0.1, 3], ψ ∈ [0.1, 1], and ν ∈ [10−5, 0]. As Xt and Nt that are

used to simulate the data set {Yi}16
i=1, are realizations of Poisson random variables, we

randomize 10 different Xts and Nts, simulate 10 corresponding data sets {Yi}16
i=1 (one

for each Xt and Nt), and perform the above-mentioned procedure to each {Yi}16
i=1

independently. At the end of each run of the CMD algorithm, the quality measure

ζX̄ of the recovered scattering pattern is calculated using Eq. 3.3. For three different

sets of σi (with ψ = 0.3 and µ ∈ {0.3, 1, 3}), we present in Fig. 3.6b the dependence

of ζX̄ on ν, where the curve represents the mean ζ over the 10 experiments, and the

error bars show the standard deviation of ζ over the 10 experiments. Having a grid of

the parameters µ, ψ and ν, where each point on the grid is assigned with 10 different

calculated ζs, we calculate the mean over the 10 ζs, and the best performing triplet
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Figure 3.6: Optimizing the parameters of the CMD algorithm. (a) Three different
sets of weights σi defined by Eq. 3.16 with ψ = 0.3 and µ = 0.3 (blue), µ = 1 (red),
and µ = 3 (green). (b) Performance of the CMD algorithm, measured by the value
of ζX̄ (defined in Eq. 3.3) for various values of ν (see Eq. 2.7) and weights σi (colored
as in (a)). Each curve represents the mean of ζX̄ calculated over 10 consecutive
experiments, with error bars showing the standard deviation of the 10 experiments.

(µ, ψ, ν) is found using argmax on the mean ζs. The best-performing values found

are µ = 0.3, ψ = 0.3 and ν = 0.09. We note that applying this optimization process

to the above-mentioned simulations that are based on Eq. 3.14 (using a Gaussian

noise model) resulted in µ = 0.3, ψ = 0.3 and ν = 0.05, as mentioned earlier.

Next, we examine how the exposure time (t in Eq. 3.17) and the number of Yis

affect the error (ε of Eq. 3.1) of the recovered scattering pattern (X̄ of Eq. 2.7). To

that end, for a given t ∈ {0.1, 0.8, 4}, we generate Xt using Eq. 3.17, and simulate

a set of scattering patterns {Yi}16
i=1 using Eq. 3.19, with the PSFs and noise model

described above Eq. 3.19. Next, for a given k ∈ {3, . . . , 16}, we choose k scattering

patterns Yi at random, forming a subset of {Yi}16
i=1, labeled {Yij}kj=1. We apply the

CMD algorithm to {Yij}kj=1, resulting in X̄, calculate the recovery error ε of X̄ using
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Eq. 3.1, and label this recovery error by εt,k1 . For future reference, we note that the

total exposure time used to produce {Yij}kj=1 is t · k, and hence, the exposure time

that corresponds to εt,k1 is tk. Next, using the same t and k, we repeat this procedure(
16
k

)
− 1 times, each time with a different subset of {Yi}16

i=1 of size k (covering all

possible subsets of {Yi}16
i=1 of size k), and denote the recovery error corresponding to

the nth subset by εt,kn for n ∈ {2, . . . ,
(

16
k

)
}. Finally, we define ε(t, k) = minn(εt,kn ).

In a similar way, we compute ε(t, k) for all t ∈ {0.1, 0.8, 4} and k ∈ {3, . . . , 16}.
As discussed in the previous experiment, since Xt and Nt that are used to simulate

the data set {Yi}16
i=1, are realizations of Poisson random variables, we randomize

10 different Xts and Nts for a given t, simulate 10 corresponding data sets {Yi}16
i=1

(one for each Xt and Nt), perform the above-mentioned procedure to each {Yi}16
i=1

independently, and calculate the corresponding ε(t, k). Finally, we define E(t, k) as

the mean over the 10 values of ε(t, k), and use E(t, k) to examine the dependence of

the recovery error on the exposure time t and the number of Yis k. In Fig. 3.7, we

show E(t, k) using solid curves, where each curve represents E(t, k) as a function of

k for a given t. The curves are colored in purple for t = 0.1, orange for t = 0.8, and

gray for t = 4. The error bars in Fig. 3.7 correspond to the standard deviation of

ε(t, k) over the 10 repetitions. As one can notice, the recovery error ε decreases as

the size of the subset of {Yi}16
i=1 (i.e. k) increases. In addition, longer exposure time

results in a lower recovery error ε.

As the total exposure time that corresponds to each ε(t, k) is tk (as discussed in

the previous paragraph), we would like the examine the recovery error ε of a single

scattering pattern, taken with an exposure time of tk and no PSF blur. In order to

do so, we define

X̃t,k = poissrnd
(
tk · (XGT +NBKG)

)
, (3.22)

where XGT and NBKG are simulated as in the previous setup, with the indexing

t, k explained below. For a given XGT , NBKG, t and k, we simulate 10 inde-

pendent realizations X̃t,k, use Eq. 3.1 to calculate the corresponding recovery er-

ror ε of each X̃t,k, and label it ε̃(t, k, n) for n ∈ {1, ..., 10}. Finally we calculate

Ẽ(t, k) = 1
10

∑10
n=1 ε̃(t, k, n) for a fixed t and k. Repeating this for t ∈ {0.1, 0.8, 4}
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and k ∈ {3, . . . , 16} we end up with the dependence of Ẽ(t, k) on t and k. This

dependence is shown in Fig. 3.7 as dashed curves, where each curve shows Ẽ(t, k) as

a function of k for a given t. The curves are colored by purple for t = 0.1, orange for

t = 0.8, and gray for t = 4. As before, the curves in Fig. 3.7 represent Ẽ(t, k) and

the error bar represents the standard deviation of the 10 consecutive ε̃(t, k). This

experiment presents the main advantage of the CMD algorithm. For short exposure

times, which are common and desired in SAXS experiments [18, 22, 33], applying the

CMD algorithm on a set of scattering patterns Yi, each taken with a different PSF,

outperforms taking a single scattering pattern with an equivalent exposure time and

an unrealistic blur-less system. We have used in this experiment the recovery error ε

of Eq. 3.1 instead of the quality measure ζ of Eq. 3.3, as the former better presents

the point demonstrated here.

Finally, we conduct an experiment that shows a limitation of the CMD algorithm.

We simulate XGT with two peaks using Eq. 3.5, and a set of scatting patterns {Yi}16
i=1

using Eq. 3.19 and the surrounding paragraph. We then apply the CMD algorithm

on {Yi}16
i=1, and examine how close the two peaks of XGT can be, while still being

able to identify a valley between the two peaks in IX̄ [r], where X̄ is the recovered

scattering pattern using the CMD algorithm (Eq. 2.7). We study this using the

following setup. First, we simulate XGT with two terms I(r|ri0, γi, Di) (defined in

Eq. 3.5) where D1,2 = 1, γ1,2 = 0.7, r1
0 = 30 pixels, and r2

0 varies between 31 to 45

pixels. Next, for each of the resulting XGT , we simulate a set of scattering patterns Yi

using Eq. 3.19 and the set of PSFs defined by Eq. 3.13, with parameters given in

Table 3.2. We then apply the CMD algorithm to the resulting set of Yis. Finally,

we calculate ζX̄ for each X̄ that results from the runs of the CMD algorithm. Note

that each run uses a set of Yis that correspond to a different XGT , as r2
0 is different

for different runs. We define ∆R = r2
0 − r1

0, and present ζX̄ as a function of ∆R

in Fig. 3.8 using black markers. For clarity, we denote ζX̄ by ζ(∆R) to emphasize

its dependence on ∆R. For comparison, ζ(∆R) can be calculated analytically from
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Figure 3.7: Recovery error (Eq. 3.1) for the CMD algorithm as a function of the
number of PSFs used and exposure time (t of Eq. 3.17) (solid lines), using the
optimal ν (ν = 0.09) and a σi function defined by Eq. 3.16 with µ = ψ = 0.3
(presented as the red curve in Fig. 3.6a). For comparison, ε (Eq. 3.1) of a scattering
pattern defined by Eq. 3.22 with an equivalent exposure time is presented in dashed
lines. The different lines represent short, intermediate and long simulated exposure
times with t = 0.1, 0.8, 4, respectively, as defined in Eqs. 3.17 and 3.22. Error bars
show the standard deviation of the recovery error over 10 independent simulations.
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Figure 3.8: Quality measure ζ (Eq. 3.3) for various distances ∆R between the two
peaks in the radial profile. Black markers correspond to ζX̄ of scattering patterns
recovered by the CMD algorithm. Red circles correspond to ζXGT of XGT used to
simulate the different Yis used by the CMD algorithm. Dashed line corresponds to
the analytical value of ζ as given by Eq. 3.23.

Eq. 3.5 to be

ζA(∆R) =
2D∆R

(
(∆R)2 − 2γ2

)(
γ2 + (∆R)2

)(
4γ2 + (∆R)2

) , ∆R > 0, (3.23)

where ζA stands for analytic, and we assume the same D and γ for both peaks, as in

our setup. The value of ζA(∆R) is shown as a dashed line in Fig. 3.8. In addition,

we numerically calculated ζXGT for the scattering patterns XGT that were used to

simulate the different sets of Yis. In order to verify that these values of ζXGT approach

the analytical values of ζA(∆R), we present ζXGT for ∆R ∈ {1.1, 2.1, . . . , 14.1} using

red circles in Fig. 3.8, labelled ’GT’ for ground truth. As one can notice, the values

of ζ(∆R) approach their corresponding analytical values for ∆R > 5. However, for

∆R ∈ (1.7, 5), ζ(∆R) doesn’t follow the analytical curve. In addition, while the

analytical values of ζA(∆R) remain positive down to ∆R = 1, which is related to

the existence of a valley between the two peaks (see explanation above Eq. 3.3), the

calculated ζ(∆R) vanishes for ∆R < 1.8.

In Fig. 3.9, we demonstrate the added value of the srSAXS algorithm using sim-
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ulated data. The procedure for simulating the data for the srSAXS algorithm is

described by Eq. 3.20 and its surrounding paragraph. Applying the srSAXS algo-

rithm to the simulated Yis results in a recovered scattering pattern in which the

nearby peaks can be clearly identified. The quality measure of the recovered pattern

is ζX̄ = 0.026. Remarkably, ζX̄ is larger than ζYi for all scattering patterns Yi used

by the srSAXS algorithm, among which the largest is ζY ∗ = 0.022.

3.3 SAXS measurments

Motivated by our simulated data results, we next test the CMD algorithm using

measure SAXS data. Our test samples are Silver behenate (AgBh) powder, show-

ing lamellar scattering signals, and DOPE phospholipids in solution, showing self-

assembled inverted hexagonal phase. Additional information regarding the sample

preparation procedure can be found in Appendix A.1. Both samples exhibit concen-

tric scattering rings, that appear as peaks and valleys in the corresponding radial

profiles (Eq. 3.2), and follow our assumption in the paragraph above Eq. 3.3. As

common in the SAXS literature [3, 14, 16, 18, 19, 23, 25, 26, 32, 41], the r-axis of the

radial profiles, which was previously presented in units of pixels, is presented in this

section in q space (see Fig. 1.1). The dependence between r and q is approximately

linear, and throughout this section we use

q[nm−1] = C · r[pixels], (3.24)

with C = 0.12 nm−1

pixels
. The precise dependence between r and q, together with the

derivation of Eq. 3.24, the calculation of C, and additional information on the SAXS

setup are given in Appendix A.2.

Throughout this section, 6 different PSFs are used to capture the different scat-

tering patterns Yi of Eq. 2.1. The PSFs are determined by the following slit sizes

(measured in mm2): 0.6× 0.6 ; 0.6× 0.8 ; 0.6× 1.0 ; 0.8× 0.6 ; 0.8× 0.8 ; 0.8× 1.0.

Fig 3.10 presents these PSFs as they were captured on the detector, as well as the

middle row/column of each captured PSF that show the shape of the beam. In Ta-
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Figure 3.9: Radial profiles of simulated and recovered scattering patterns, demon-
strating the added value of the srSAXS algorithm. Different radial profiles are pre-
sented for comparison: the blue curve corresponds to the radial profile of the scat-
tering pattern XGT used to simulate the Yis; the red curve corresponds to the radial
profile of Yi produced with some PSF simulated using Eq. 3.13 and Table 3.2; the yel-
low curve corresponds to the radial profile of the scattering pattern recovered by the
CMD algorithm; the purple curve corresponds to the radial profile of the scattering
pattern recovered by the srSAXS algorithm; and the green curve corresponds to the
radial profile of the super resolution algorithm of [36] used without their proposed
deconvolution process, labeled SPS; in addition, the scattering pattern recovered by
the srSAXS algorithm is presented in the inset.
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PSF [mm×mm] Area [×10−2mm2] Flux [×106 counts/sec]

0.2× 0.2 4 0.258
0.4× 0.4 16 2.807
0.2× 0.8 16 2.185
0.6× 0.4 24 4.959
0.4× 0.6 24 5.006
0.8× 0.4 32 6.840
0.4× 0.8 32 7.137
0.6× 0.6 36 9.013
1.0× 0.4 40 8.577
0.4× 1.0 40 9.705
0.6× 0.8 48 12.625
0.8× 0.6 48 13.360
0.6× 1.0 60 16.295
0.8× 0.8 64 18.693
0.8× 1.0 80 25.248
1.0× 1.0 100 28.799

Table 3.3: Values of incoming flux as measured directly on the detector. Various
slit shapes are presented, where the slits that were used in our experiments are
highlighted in green. A slit that was used for additional comparisons is highlighted
in yellow.

ble 3.3, we present the values of incoming flux as measured directly on the detector

for various PSFs, highlighting in green the PSFs that where used to measure the

different Yis. In addition, for various comparisons throughout this section, we use a

slit size of 0.2 × 0.2 mm2 in addition to the set of PSFs described above. This is

highlighted in yellow in Table 3.3.

In order to capture scattering patterns for the srSAXS algorithm, we move the

detector in sub-pixel translations of ±172/3 µm between consecutive captures, as

the pixel size of our apparatus is 172 × 172 µm2 (specified in Appendix A.2). This

is done repeatedly for each PSF, and the resulting data set is of the form {Y k
i },

where k ∈ {1, . . . , 9} for the different sub-pixel translations, and i ∈ {1, . . . , 6} for

the different PSFs.
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Figure 3.10: Measured PSFs. Panels (a) – (c) and (e) – (g) show (on a log scale)
PSFs corresponding to slits sizes of 0.6 × 0.6 ; 0.6 × 0.8 ; 0.6 × 1.0; 0.8 × 0.6 ;
0.8 × 0.8 ; 0.8 × 1.0mm2, respectively. (d), (h),(i)–(k) Middle row/column of the
PSFs, normalized to have a maximum of 1 to demonstrate the beam shaping effect.
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Throughout this section, we calculate the quality measure ζ (Eq. 3.3) of the

scattering patterns that correspond to the DOPE sample. The reason for using

this sample is that its radial profile is characterized by a small distance between

the second and third peaks (counting outwards). In order to calculate ζ out of the

DOPE scattering patterns, we excluded the first peak from their radial profiles, and

calculated the quality measure (using Eq. 3.3) of the remaining of the radial profile.

In order to apply the CMD algorithm to measured SAXS data, 6 different scatter-

ing patterns were taken for the DOPE sample (one for each PSF), with exposure times

of t = 10 sec each. As discussed in the previous section, the optimal performance of

the CMD algorithm depends of several parameters, and in order to optimize them,

we have conducted a grid search as described earlier in the paragraph surrounding

Eq. 3.21. Recalling Eq. 3.21

σi = exp

(
− (Si − µS̄)2

(ψS̄)2

)
, S̄ =

1

6

6∑
j=1

Sj,

we found that the optimal performance of the CMD algorithm is achieved for µ = 0.7,

ψ = 1.2 and ν = 0.04. The recovered scattering pattern is presented in Fig. 3.11b,

and its corresponding quality measure is calculated (using Eq. 3.3) to be ζX̄ = 1.15.

In addition, since the total exposure time used to measure the Yis used by the CMD

algorithm is 10 × 6 sec, we measured a raw scattering pattern Y ∗ with a PSF that

corresponds to a slit size of 0.6× 0.6 mm2, and with an exposure time of t = 60 sec.

Note that this slit is the tightest that was used to capture the Yis. Y
∗ is presented in

Fig. 3.11a, and its corresponding quality measure is calculated to be ζY ∗ = 0.57. For

comparison, the radial profiles of the scattering pattern X̄ recovered by the CMD

algorithm, and the raw scattering pattern Y ∗ are presented in Fig. 3.11c. One can

find the second and third peaks in q ∈ (1.5, 2.2) nm−1, and notice that the valley

between the two peaks is indeed shallow for IY ∗ [q] (blue curve) while deep for IX̄ [q]

(red curve).

Next, 6 scattering patterns where taken for the AgBh sample (one for each PSF),

with exposure times of t = 10 sec each. Using the same parameters for the CMD al-
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Figure 3.11: CMD algorithm applied to measured data: (a)–(c) DOPE sample,
(d)–(f) AgBh sample. (a), (d) Measurements with PSF that corresponds to a slit
of size 0.6 × 0.6 mm2, and with an exposure time of 60 sec, labeled Y ∗. (b), (e)
Scattering pattern recovered by the CMD algorithm using 6 different PSFs, each
with an exposure time of 10 seconds. (c), (f) Radial profiles of (a)–(b), (d)–(e). The
error bars represent standard deviation for 10 independent measurements of each
sample.
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gorithm as above (µ = 0.7, ψ = 1.2 and ν = 0.04), the resulting recovered scattering

pattern is presented in Fig. 3.11e. The scattering pattern Y ∗ for this sample (mea-

sured as above) is presented in Fig. 3.11d, and for comparison, the corresponding

radial profiles are presented in Fig. 3.11f

In Fig. 3.12, we present the results of the srSAXS algorithm for the scattering

data of DOPE sample, measured at 9 different sub-pixel translations, using 6 different

PSFs, and with exposure times of 10 sec each. Measuring the DOPE sample and

processing the measured Y k
i s by the srSAXS algorithm results in X̄srSAXS, shown

in Fig. 3.12c. We use the srSAXS subscript for X̄ to emphasize the algorithm

that was used to recover X̄. The corresponding quality measure ζ (Eq. 3.3) is

ζX̄srSAXS = 1.22. This quality measure is larger than the value ζX̄ = 1.15 reported

for the previous experiment. For additional comparison, we measured another two

raw scattering patterns Yi. First, similarly to the previous experiment, we measured

a raw scattering pattern Y ∗ with the tightest slit used by the srSAXS algorithm

(0.6 × 0.6 mm2) and with an equivalent total exposure time of 540 sec (that is

9 translations× 6 PSFs× 10 sec). The quality measure (Eq. 3.3) of Y ∗ is calculated

to be ζY ∗ = 0.59. In addition, we measured a raw scattering pattern Y ∗∗ using

the tightest slit possible in our setup (0.2 × 0.2 mm2), using an exposure time of

1080 sec, which is twice the total exposure time used to generate the Y k
i data set

for the srSAXS algorithm. Y ∗∗ is presented in Fig. 3.12a, and its quality measure

is calculated to be ζY ∗∗ = 1.21. The corresponding radial profiles are presented in

Fig. 3.12g.

These results manifest the added value of the srSAXS algorithm. However, we

do notice that the CMD and srSAXS algorithms produce additional small spurious

peaks. One way of solving this is by choosing another regularization method, such

as L1 or some Tikhonov Regularization [12]. Our experiments with such regularizers

show different results, but not with great significance, and this remains to be further

researched.

In addition, we applied the srSAXS algorithm to the scattering data of the AgBh

sample, measured at 9 different sub-pixel translations, using 6 different PSFs, and

with exposure times of 10 sec each. The scattering pattern recovered by the srSAXS
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algorithm is presented in Fig. 3.12f. In a similar way to the previous experiment, we

capture Y ∗ and Y ∗∗, where the later is presented in Fig. 3.12d. For comparison, the

corresponding radial profiles are presented in Fig. 3.12h.

We compared our srSAXS algorithm with other deconvolution techniques applied

to the measured scattering patterns of the DOPE sample. The results are presented

in Fig. 3.13. In this paragraph, we subscript the calculated quality measures (ζ

of Eq. 3.3) by the algorithm used to recover the corresponding scattering pattern.

We implemented the Richardson-Lucy (RL) algorithm [27, 35], which is discussed in

Chapter 1, and present its recovered scattering pattern in Fig. 3.13b. The corre-

sponding radial profile is presented as the red curve in Fig. 3.13e, and the quality

measure was calculated to be ζRL = 1.19. An additional comparison is presented

using the full implementation of the algorithm of Farsiu et. al (FA), including their

proposed deconvolution [36], in Fig. 3.13d. The corresponding radial profile is pre-

sented as the green curve in Fig. 3.13e, and the quality measure was calculated

to be ζFA = 1.17. A raw scattering pattern Y ∗∗, which is taken with the tight-

est slits opening possible in our setup (0.2 × 0.2 mm2) and with exposure time of

1080 sec is presented in 3.13a. The corresponding radial profile is presented as the

blue curve in Fig. 3.13e, and the quality measure was calculated to be ζY ∗∗ = 1.21.

For comparison, the results of our srSAXS algorithm are presented in Fig. 3.13c. Its

corresponding radial profile is presented as the purple curve in Fig. 3.13e, and shows

better performance with ζsrSAXS = 1.22.
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Figure 3.12: Measurements and recovered scattering patterns using the srSAXS algo-
rithm for (a)–(c), (g) DOPE and (d)–(f), (h) AgBh samples. (a), (d) Raw scattering
patterns Y ∗∗, taken with the tightest slit size possible in the setup (0.2× 0.2 mm2),
and exposure time of 18 minutes. (b), (e) Scattering patterns with slit size of
0.6 × 0.6 mm2 and exposure time of 10 sec (raw data for the CMD algorithm).
(c), (f) SrSAXS recovered scattering patterns with 9 sub-pixel translations and 6
different PSFs. (g), (h) Radial profiles. Blue curves correspond to Y ∗∗ (shown in
(a), (d)), red curves correspond to the raw scattering patterns Y ∗, taken with slit
size of 0.6× 0.6 mm2 and exposure times of 540 sec, green curves correspond to the
super resolution algorithm of [36] applied without their deconvolution procedure, la-
beled SPS, and purple curves correspond to the scattering patterns recovered by the
srSAXS algorithm. 56
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Figure 3.13: Comparison of different deconvolution techniques. (a) Raw scattering
pattern Y ∗∗, taken with an exposure time of 18 minutes, and with slit size of 0.2 ×
0.2 mm2. (b) Richardson-Lucy deconvolution technique, using the 0.6 × 0.6 mm2

PSF and an exposure time of 9 minutes (RL). (c) Our srSAXS algorithm with a total
exposure time of 6×9×10 seconds (similar to Fig. 3.12c). (d) Full implementation of
Farsiu algorithm (FA) [36] (including their proposed deconvolution technique) using
the 0.6× 0.6 mm2 slit and an exposure time of 9 minutes. (e) Radial profiles.
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Chapter 4

Summary

In this thesis, we propose a deconvolution algorithm that takes as input multiple

scattering patterns, each acquired with a different PSF, and recovers their underlying

scattering pattern. This is done by using the acquired scattering patterns to cast

a minimization problem. We show that this minimization problem has a unique

solution, and solve it using the conjugate gradients method. In addition, we propose

cascading our algorithm with a sub-pixel super resolution algorithm [36].

In order the test the proposed algorithm, we conducted experiments that are

based on two types of data sets: numerical simulations, and measured SAXS data.

In order to evaluate the recovered scattering patterns, we phrased a quality measure,

that is based on the azimuthal symmetry of the scattering pattern. We simulated

scattering patterns with various parameters, such as the number of the scattering

patterns and the exposure times, and tested how the quality measure depends on

these. In addition, we showed a limitation that the proposed algorithm has in recov-

ering specific scattering patterns. Finally, we showed the added value of cascading

our proposed algorithm with a super resolution algorithm. Furthermore, we applied

our proposed algorithm upon measured scattering patterns and demonstrated the

value of the proposed algorithm by comparing it to other deconvolution algorithms.

While our results demonstrate the added value of our algorithms, we do notice

that the CMD and srSAXS algorithms produce additional small spurious peaks. One

way of solving this may involve choosing another regularization method, such as L1
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or some Tikhonov Regularization [12]. Our experiments with such regularizers are

not conclusive, and this remains to be further researched. In addition, we point

that our cascaded algorithm is somewhat brute-force, and a more natural approach

would be to combine the two phases of the cascaded algorithm into a single unified

framework. Finally, despite the fact that super resolution algorithms exist for 30

years, to our best knowledge, this is the first proposal of applying a super resolution

algorithm to SAXS measurements, and applying it in a synchrotron facility may

result in tremendous advancement.
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Appendix A

Data generation

A.1 Samples preparation

Commercial AgBh powder (Thermo Fisher Scientific) was used without any further

purification. 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) was purchased

from Avanti Polar Lipids Inc. The lipids were dissolved in water (DDW), total lipid

concentration was 30 mg/ml per sample. Samples were homogenized using a vortexer

for 5 minutes at 3000 RPM. Samples were then placed in quartz capillaries (1.5 mm

in diameter), containing about 40µl.

A.2 SAXS measurement setup

Measurements were performed using a lab-based X-ray scattering system, with a

GeniX (Xenocs) low divergence Cu Kα radiation source (wavelength of λ = 1.54Å)

and a scatterless slits setup [25]. The beam’s full width half maximum (size) is 1mm

in diameter, and the measured divergence is 0.0372 degrees (2θ). Samples were mea-

sured at distance of ds = 117mm using Pilatus 300K detector (Dectris), having pixel

size of 172 × 172µm2 . The detector, sample stage, and slits were motorized using

stepper motors with a positioning accuracy of 1µm and were controlled by SPEC

software. In all the measured images, only valid pixels were used. Gaps between
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the separate detector’s modules were removed in post-processing. All the scattering

patterns that are presented in Section 3.3 were cropped to show the relevant area.

For the r axis of the radial profiles (Eq. 3.2), the connection between q [nm−1]

and r [pixels] is given by [11]

q =
4π

λ
sin
(1

2
arctan

(Pr
ds

))
,

where P is the size of the pixel, and λ and ds are given in the previous paragraph.

However, as P
ds
∝ 10−3, we use the fact that sin(1

2
arctan(x)) = x

2
+ o(x3) [40], in

order to approximate q ≈ 4π
λ

P
2ds
r. This makes the linear coefficient of Eq. 3.24 to be

C =
2πP

λds

[ nm−1

pixels

]
,

from which C is calculated to be C = 0.12 nm−1

pixels
.
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 תקציר:

( היא טכניקה המאפשרת אפיון ננווסקופי של Small-angle X-ray scattering - SAXSפיזור רנטגן בזווית קטנה )

מקרינים דגימה באמצעות קרן רנטגן, וכתוצאה מכך נוצרת תבנית  SAXSדגימות שונות בתנאים שונים. בניסוי 

 point spreadפיזור דו מימדית. למרבה הצער, דפוס פיזור זה מעוות על ידי פונקציית התפשטות נקודה )

function - PSFט בה במהלך הניסוי.(, שניתן לשלו 

 PSFשלוקח דפוסי פיזור מרובים, כל אחד מהם נרכש עם  קונבולוציה-הדבתזה זו אנו מציעים אלגוריתם של 

 כבעיית מזעור, שחזור התמונה המקוריתאחר, ומשחזר את דפוס הפיזור הבסיסי שלהם. האלגוריתם מבוסס על 

 לשלב. בנוסף, אנו מציעים (conjugate gradients) מידהמוצג שיש לו פיתרון ייחודי, המתקבל בשיטת שיפועי הצ

את האלגוריתם שלנו באמצעות  אנו בוחנים. [36] יפיקסל-רזולוציית תת-סופראת האלגוריתם שלנו באלגוריתם 

 ניסיוניות. SAXSוכן באמצעות מדידות  נומריותסימולציות 

 


